Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.706
Filtrar
1.
Commun Biol ; 7(1): 532, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710927

RESUMO

Golgin tethers are known to mediate vesicular transport in the secretory pathway, whereas it is relatively unknown whether they may mediate cellular stress response within the cell. Here, we describe a cellular stress response during heat shock stress via SUMOylation of a Golgin tether, Golgin45. We found that Golgin45 is a SUMOylated Golgin via SUMO1 under steady state condition. Upon heat shock stress, the Golgin enters the nucleus by interacting with Importin-ß2 and gets further modified by SUMO3. Importantly, SUMOylated Golgin45 appears to interact with PML and SUMO-deficient Golgin45 mutant functions as a dominant negative for PML-NB formation during heat shock stress, suppressing transcription of lipid metabolism genes. These results indicate that Golgin45 may play a role in heat stress response by transcriptional regulation of lipid metabolism genes in SUMOylation-dependent fashion.


Assuntos
Resposta ao Choque Térmico , Metabolismo dos Lipídeos , Sumoilação , Ubiquitinas , Humanos , Metabolismo dos Lipídeos/genética , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica , Proteína da Leucemia Promielocítica/metabolismo , Proteína da Leucemia Promielocítica/genética , Células HeLa , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Células HEK293 , Transcrição Gênica , beta Carioferinas/metabolismo , beta Carioferinas/genética
2.
Nat Commun ; 15(1): 3215, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615096

RESUMO

Spatial compartmentalization is a key facet of protein quality control that serves to store disassembled or non-native proteins until triage to the refolding or degradation machinery can occur in a regulated manner. Yeast cells sequester nuclear proteins at intranuclear quality control bodies (INQ) in response to various stresses, although the regulation of this process remains poorly understood. Here we reveal the SUMO modification of the small heat shock protein Btn2 under DNA damage and place Btn2 SUMOylation in a pathway promoting protein clearance from INQ structures. Along with other chaperones, and degradation machinery, Btn2-SUMO promotes INQ clearance from cells recovering from genotoxic stress. These data link small heat shock protein post-translational modification to the regulation of protein sequestration in the yeast nucleus.


Assuntos
Proteínas de Choque Térmico Pequenas , Corpos de Inclusão Intranuclear , Proteínas de Transporte Vesicular , Dano ao DNA , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Cell Commun Signal ; 22(1): 206, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566133

RESUMO

BACKGROUND: The protein annexin A6 (AnxA6) is involved in numerous membrane-related biological processes including cell migration and invasion by interacting with other proteins. The dysfunction of AnxA6, including protein expression abundance change and imbalance of post-translational modification, is tightly related to multiple cancers. Herein we focus on the biological function of AnxA6 SUMOylation in hepatocellular carcinoma (HCC) progression. METHODS: The modification sites of AnxA6 SUMOylation were identified by LC-MS/MS and amino acid site mutation. AnxA6 expression was assessed by immunohistochemistry and immunofluorescence. HCC cells were induced into the epithelial-mesenchymal transition (EMT)-featured cells by 100 ng/mL 12-O-tetradecanoylphorbol-13-acetate exposure. The ability of cell migration was evaluated under AnxA6 overexpression by transwell assay. The SUMO1 modified AnxA6 proteins were enriched from total cellular proteins by immunoprecipitation with anti-SUMO1 antibody, then the SUMOylated AnxA6 was detected by Western blot using anti-AnxA6 antibody. The nude mouse xenograft and orthotopic hepatoma models were established to determine HCC growth and tumorigenicity in vivo. The HCC patient's overall survival versus AnxA6 expression level was evaluated by the Kaplan-Meier method. RESULTS: Lys579 is a major SUMO1 modification site of AnxA6 in HCC cells, and SUMOylation protects AnxA6 from degradation via the ubiquitin-proteasome pathway. Compared to the wild-type AnxA6, its SUMO site mutant AnxA6K579R leads to disassociation of the binding of AnxA6 with RHOU, subsequently RHOU-mediated p-AKT1ser473 is upregulated to facilitate cell migration and EMT progression in HCC. Moreover, the SENP1 deSUMOylates AnxA6, and AnxA6 expression is negatively correlated with SENP1 protein expression level in HCC tissues, and a high gene expression ratio of ANXA6/SENP1 indicates a poor overall survival of patients. CONCLUSIONS: AnxA6 deSUMOylation contributes to HCC progression and EMT phenotype, and the combination of AnxA6 and SENP1 is a better tumor biomarker for diagnosis of HCC grade malignancy and prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Anexina A6/genética , Anexina A6/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Cromatografia Líquida , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Sumoilação , Espectrometria de Massas em Tandem
4.
Cell Mol Life Sci ; 81(1): 169, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589732

RESUMO

Rhes (Ras homolog enriched in the striatum), a multifunctional protein that regulates striatal functions associated with motor behaviors and neurological diseases, can shuttle from cell to cell via the formation of tunneling-like nanotubes (TNTs). However, the mechanisms by which Rhes mediates diverse functions remain unclear. Rhes is a small GTPase family member which contains a unique C-terminal Small Ubiquitin-like Modifier (SUMO) E3-like domain that promotes SUMO post-translational modification of proteins (SUMOylation) by promoting "cross-SUMOylation" of the SUMO enzyme SUMO E1 (Aos1/Uba2) and SUMO E2 ligase (Ubc-9). Nevertheless, the identity of the SUMO substrates of Rhes remains largely unknown. Here, by combining high throughput interactome and SUMO proteomics, we report that Rhes regulates the SUMOylation of nuclear proteins that are involved in the regulation of gene expression. Rhes increased the SUMOylation of histone deacetylase 1 (HDAC1) and histone 2B, while decreasing SUMOylation of heterogeneous nuclear ribonucleoprotein M (HNRNPM), protein polybromo-1 (PBRM1) and E3 SUMO-protein ligase (PIASy). We also found that Rhes itself is SUMOylated at 6 different lysine residues (K32, K110, K114, K120, K124, and K245). Furthermore, Rhes regulated the expression of genes involved in cellular morphogenesis and differentiation in the striatum, in a SUMO-dependent manner. Our findings thus provide evidence for a previously undescribed role for Rhes in regulating the SUMOylation of nuclear targets and in orchestrating striatal gene expression via SUMOylation.


Assuntos
Proteínas Nucleares , Ubiquitina , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/genética , Sumoilação , Expressão Gênica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
5.
Biochem Soc Trans ; 52(2): 773-792, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629643

RESUMO

The preservation of genome integrity requires specialised DNA damage repair (DDR) signalling pathways to respond to each type of DNA damage. A key feature of DDR is the integration of numerous post-translational modification signals with DNA repair factors. These modifications influence DDR factor recruitment to damaged DNA, activity, protein-protein interactions, and ultimately eviction to enable access for subsequent repair factors or termination of DDR signalling. SUMO1-3 (small ubiquitin-like modifier 1-3) conjugation has gained much recent attention. The SUMO-modified proteome is enriched with DNA repair factors. Here we provide a snapshot of our current understanding of how SUMO signalling impacts the major DNA repair pathways in mammalian cells. We highlight repeating themes of SUMO signalling used throughout DNA repair pathways including the assembly of protein complexes, competition with ubiquitin to promote DDR factor stability and ubiquitin-dependent degradation or extraction of SUMOylated DDR factors. As SUMO 'addiction' in cancer cells is protective to genomic integrity, targeting components of the SUMO machinery to potentiate DNA damaging therapy or exacerbate existing DNA repair defects is a promising area of study.


Assuntos
Dano ao DNA , Reparo do DNA , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação , Humanos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo
6.
PLoS Pathog ; 20(4): e1012166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635823

RESUMO

Trypanosoma brucei are protozoan parasites that cause sleeping sickness in humans and nagana in cattle. Inside the mammalian host, a quorum sensing-like mechanism coordinates its differentiation from a slender replicative form into a quiescent stumpy form, limiting growth and activating metabolic pathways that are beneficial to the parasite in the insect host. The post-translational modification of proteins with the Small Ubiquitin-like MOdifier (SUMO) enables dynamic regulation of cellular metabolism. SUMO can be conjugated to its targets as a monomer but can also form oligomeric chains. Here, we have investigated the role of SUMO chains in T. brucei by abolishing the ability of SUMO to polymerize. We have found that parasites able to conjugate only SUMO monomers are primed for differentiation. This was demonstrated for monomorphic lines that are normally unable to produce stumpy forms in response to quorum sensing signaling in mice, and also for pleomorphic cell lines in which stumpy cells were observed at unusually low parasitemia levels. SUMO chain mutants showed a stumpy compatible transcriptional profile and better competence to differentiate into procyclics. Our study indicates that SUMO depolymerization may represent a coordinated signal triggered during stumpy activation program.


Assuntos
Trypanosoma brucei brucei , Animais , Trypanosoma brucei brucei/metabolismo , Camundongos , Tripanossomíase Africana/parasitologia , Diferenciação Celular , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Processamento de Proteína Pós-Traducional , Percepção de Quorum/fisiologia , Humanos , Sumoilação
7.
PeerJ ; 12: e17234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666079

RESUMO

Background: Post-translational modification by Small Ubiquitin-like MOdifier (SUMO) is an important mechanism to regulate protein activity, protein stability, and localization of substrates. Zbtb21 is a zinc finger and BTB (Broad-complex, Tram-track and Bric à brac) domain-containing transcription factor. Bioinformatic prediction suggests several putative SUMOylated sites in Zbtb21 protein. Methods: Two evolutionarily conserved lysine residues in Zbtb21 protein were mutated alone or in combination to disrupt the binding with SUMO molecules. Western blot and co-immunoprecipitation analyses were performed to detect the SUMOylation state of wild type and mutant Zbtb21 proteins, respectively. Luciferase reporter assays were conducted to evaluate their transcription activities. Meanwhile, immunofluorescence staining was carried out to show their sub-nuclear localizations. Finally, co-immunoprecipitation was performed to detect the interaction between Zbtb21 and its partners. Results: Phylogenetically conserved lysines 419 and 845 of zebrafish Zbtb21 protein can be conjugated with SUMO molecules. SUMOylation does not affect the subcellular localization and protein stability of Zbtb21, as well as the interaction with Zbtb14 or Zbtb21. Nevertheless, luciferase reporter assays revealed that Zbtb21 is a dual-function transcription factor which exerts activation or repression effect on different promoters, and SUMOylation can modulate the transcriptional activity of Zbtb21 in regulating downstream target genes. Hence, Zbtb21 is identified as a novel substrate of SUMOylation, which would be important for its function. Conclusions: Zebrafish Zbtb21 protein can be SUMOylated on lysines 419 and 845, which is evolutionary conserved. SUMOylation affects the dual role of Zbtb21 on transcription.


Assuntos
Sumoilação , Proteínas de Peixe-Zebra , Peixe-Zebra , Sumoilação/genética , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética , Humanos
8.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567974

RESUMO

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Assuntos
Trióxido de Arsênio , Núcleo Celular , DNA Circular , DNA Viral , Vírus da Hepatite B , Hepatite B , Sumoilação , Replicação Viral , Trióxido de Arsênio/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Replicação Viral/efeitos dos fármacos , Hepatite B/virologia , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Sumoilação/efeitos dos fármacos , DNA Circular/genética , DNA Circular/metabolismo , Núcleo Celular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Antivirais/farmacologia , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Células Hep G2
9.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669463

RESUMO

Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.


Assuntos
Estresse Fisiológico , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Plantas/enzimologia , Plantas/metabolismo , Sumoilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
10.
Cell Signal ; 119: 111156, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574938

RESUMO

In the seemingly well-researched field of vascular research, there are still many underestimated factors and molecular mechanisms. In recent years, SUMOylation has become increasingly important. SUMOylation is a post-translational modification in which small ubiquitin-related modifiers (SUMO) are covalently attached to target proteins. Sites where these SUMO modification processes take place in the cell nucleus are PML nuclear bodies (PML-NBs) - multiprotein complexes with their essential main component and organizer, the PML protein. PML and SUMO, either alone or as partners, influence a variety of cellular processes, including regulation of transcription, senescence, DNA damage response and defence against microorganisms, and are involved in innate immunity and inflammatory responses. They also play an important role in maintaining homeostasis in the vascular system and in pathological processes leading to the development and progression of cardiovascular diseases. This review summarizes information about the function of SUMO(ylation) and PML(-NBs) in the human vasculature from angiogenesis to disease and highlights their clinical potential as drug targets.


Assuntos
Proteínas Nucleares , Proteína da Leucemia Promielocítica , Sumoilação , Fatores de Transcrição , Humanos , Proteína da Leucemia Promielocítica/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia
11.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507413

RESUMO

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/metabolismo , Neoplasias Hepáticas/patologia , RNA/metabolismo , Sumoilação
12.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456491

RESUMO

High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia­inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia­associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel­Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co­immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post­translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.


Assuntos
Cobalto , Fator de Transcrição Associado à Microftalmia , Neoplasias , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Sumoilação , Linhagem Celular Tumoral , Poliploidia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Movimento Celular , Proliferação de Células
13.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456949

RESUMO

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Assuntos
Isquemia Encefálica , Sumoilação , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Cognição , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
14.
Cells ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474384

RESUMO

Neurotransmission occurs within highly specialized compartments forming the active synapse where the complex organization and dynamics of the interactions are tightly orchestrated both in time and space. Post-translational modifications (PTMs) are central to these spatiotemporal regulations to ensure an efficient synaptic transmission. SUMOylation is a dynamic PTM that modulates the interactions between proteins and consequently regulates the conformation, the distribution and the trafficking of the SUMO-target proteins. SUMOylation plays a crucial role in synapse formation and stabilization, as well as in the regulation of synaptic transmission and plasticity. In this review, we summarize the molecular consequences of this protein modification in the structural organization and function of the mammalian synapse. We also outline novel activity-dependent regulation and consequences of the SUMO process and explore how this protein modification can functionally participate in the compartmentalization of both pre- and post-synaptic sites.


Assuntos
Processamento de Proteína Pós-Traducional , Sumoilação , Animais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transmissão Sináptica/fisiologia , Mamíferos/metabolismo , Sinapses/metabolismo
15.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540730

RESUMO

Diabetes and its associated complications have increasingly become major challenges for global healthcare. The current therapeutic strategies involve insulin replacement therapy for type 1 diabetes (T1D) and small-molecule drugs for type 2 diabetes (T2D). Despite these advances, the complex nature of diabetes necessitates innovative clinical interventions for effective treatment and complication prevention. Accumulative evidence suggests that protein post-translational modifications (PTMs), including glycosylation, phosphorylation, acetylation, and SUMOylation, play important roles in diabetes and its pathological consequences. Therefore, the investigation of these PTMs not only sheds important light on the mechanistic regulation of diabetes but also opens new avenues for targeted therapies. Here, we offer a comprehensive overview of the role of several PTMs in diabetes, focusing on the most recent advances in understanding their functions and regulatory mechanisms. Additionally, we summarize the pharmacological interventions targeting PTMs that have advanced into clinical trials for the treatment of diabetes. Current challenges and future perspectives are also provided.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação , Glicosilação , Sumoilação
16.
Drug Des Devel Ther ; 18: 781-799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500692

RESUMO

Purpose: This study aimed to elucidate the protective mechanism of Traditional Chinese Medicine (TCM) Qifu Yixin formula (QFYXF) to improve heart failure (HF) by promoting ß-arrestin2 (ß-arr2)-mediated SERCA2a SUMOylation. Materials and Methods: The transverse aortic constriction (TAC)-induced HF mice were treated with QFYXF or carvedilol for 8 weeks. ß-arr2-KO mice and their littermate wild-type (WT) mice were used as controls. Neonatal rat cardiomyocytes (NRCMs) were used in vitro. Cardiac function was evaluated by echocardiography and serum NT-proBNP. Myocardial hypertrophy and myocardial fibrosis were assessed by histological staining. ß-arr2, SERCA2a, SUMO1, PLB and p-PLB expressions were detected by Western blotting, immunofluorescence and immunohistochemistry. SERCA2a SUMOylation was detected by Co-IP. The molecular docking method was used to predict the binding ability of the main active components of QFYXF to ß-arr2, SERCA2a, and SUMO1, and the binding degree of SERCA2a to SUMO1 protein. Results: The HF model was constructed 8 weeks after TAC. QFYXF ameliorated cardiac function, inhibiting myocardial hypertrophy and fibrosis. QFYXF promoted SERCA2a expression and SERCA2a SUMOylation. Further investigation showed that QFYXF promoted ß-arr2 expression, whereas Barbadin (ß-arr2 inhibitor) or ß-arr2-KO reduced SERCA2a SUMOylation and attenuated the protective effect of QFYXF improved HF. Molecular docking showed that the main active components of QFYXF had good binding activities with ß-arr2, SERCA2a, and SUMO1, and SERCA2a had a high binding degree with SUMO1 protein. Conclusion: QFYXF improves HF by promoting ß-arr2 mediated SERCA2a SUMOylation and increasing SERCA2a expression.


Assuntos
Insuficiência Cardíaca , Sumoilação , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo
17.
Genes Dev ; 38(5-6): 233-252, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38503515

RESUMO

The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.


Assuntos
Dano ao DNA , Instabilidade Genômica , Proteínas de Ciclo Celular/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Instabilidade Genômica/genética
18.
PLoS Pathog ; 20(2): e1012014, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394330

RESUMO

The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Circovirus/genética , Circovirus/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Nucleofosmina , Sumoilação , Infecções por Circoviridae/genética , Infecções por Circoviridae/metabolismo , Replicação Viral/fisiologia , DNA Viral/genética , DNA Viral/metabolismo
19.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396982

RESUMO

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Sumoilação , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citomegalovirus , Mutação , Sumoilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos
20.
Aging (Albany NY) ; 16(5): 4378-4395, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38407971

RESUMO

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Small Ubiquitin-like Modifier (SUMO)-ylation plays a crucial role in tumorigenesis. However, the SUMOylation pathway landscape and its clinical implications in LUAD remain unclear. Here, we analyzed genes involved in the SUMOylation pathway in LUAD and constructed a SUMOylation pathway signature (SUMOPS) using the LASSO-Cox regression model, validated in independent cohorts. Our analysis revealed significant dysregulation of SUMOylation-related genes in LUAD, comprising of favorable or unfavorable prognostic factors. The SUMOPS model was associated with established molecular and histological subtypes of LUAD, highlighting its clinical relevance. The SUMOPS stratified LUAD patients into SUMOPS-high and SUMOPS-low subtypes with distinct survival outcomes and adjuvant chemotherapy responses. The SUMOPS-low subtype showed favorable responses to adjuvant chemotherapy. The correlations between SUMOPS scores and immune cell infiltration suggested that patients with the SUMOPS-high subtype exhibited favorable immune profiles for immune checkpoint inhibitor (ICI) treatment. Additionally, we identified UBA2 as a key SUMOylation-related gene with an increased expression and a poor prognosis in LUAD. Cell function experiment confirmed the role of UBA2 in promoting LUAD cell proliferation, invasion, and migration. These findings provide valuable insights into the SUMOylation pathway and its prognostic implications in LUAD, paving the way for personalized treatment strategies and the development of novel therapeutic targets.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Sumoilação , Prognóstico , Imunoterapia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Enzimas Ativadoras de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA